Divergent Expression Patterns of Drp1 and HSD10 in the Nigro-Striatum of Two Mice Strains Based on their MPTP Susceptibility

基于 MPTP 敏感性,两种小鼠黑质纹状体中 Drp1 和 HSD10 的不同表达模式

阅读:5
作者:Akshaya Seshadri, Phalguni Anand Alladi

Abstract

Alterations in the basal ganglia circuitry are critical events in the pathophysiology of Parkinson's disease (PD). We earlier compared MPTP-susceptible C57BL/6J and MPTP-resistant CD-1 mice to understand the differential prevalence of PD in different ethnic populations like Caucasians and Asian-Indians. The MPTP-resistant CD-1 mice had 33% more nigral neurons and lost only 15-17% of them following MPTP administration. In addition to other cytomorphological features, their basal ganglia neurons had higher calcium-buffering protein levels. During disease pathogenesis as well as in MPTP-induced parkinsonian models, the loss of nigral neurons is associated with reduction in mitochondrial complex-1. Under these conditions, mitochondria respond by undergoing fusion or fission. 17β-hydroxysteroid type 10, i.e., hydroxysteroid dehydrogenase10 (HSD10) and dynamin-related peptide1 (Drp1) are proteins involved in mitochondrial hyperfusion and fission, respectively. Each plays an important role in mitochondrial structure and homeostasis. Their role in determining susceptibility to the neurotoxin MPTP in basal ganglia is however unclear. We studied their expression using immunohistochemistry and Western blotting in the dorsolateral striatum, ventral tegmental area, and substantia nigra pars compacta (SNpc) of C57BL/6J and CD-1 mice. In the SNpc, which exhibits more neuron loss following MPTP, C57BL/6J had higher baseline Drp1 levels; suggesting persistence of fission under normal conditions. Whereas, HSD10 levels increased in CD-1 following MPTP administration. This suggests mitochondrial hyperfusion, as an attempt towards neuroprotection. Thus, the baseline differences in HSD10 and DRP1 levels as well as their contrasting MPTP-responses may be critical determinants of the magnitude of neuronal loss/survival. Similar differences may determine the variable susceptibility to PD in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。