Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation

Piezo1 通过调节 YAP/TAZ 激活介导内皮动脉粥样硬化炎症反应

阅读:10
作者:Ying Yang #, Danyang Wang #, Chunxiao Zhang, Wenqing Yang, Chao Li, Zichen Gao, Ke Pei, Yunlun Li

Abstract

The vascular endothelium plays a key role in the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell Piezo1 mediates blood vessel formation, angiogenesis and regulation of blood pressure. However, changes of Piezo1 expression in atherosclerosis (AS) and the role of Piezo1 in the progression of atherosclerotic diseases remains obscure. Thus, the current study is to elucidate the role and mechanism of which Piezo1 mediates vascular inflammation in atherosclerotic mice and vascular endothelial inflammation induced by oxidized low density lipoprotein (ox-LDL) in vitro. Here, we have shown that the expression of Piezo1 was significantly increased in the stenotic carotid artery of ApoE-/- mice fed by high-fat diet (HFD). Pharmacological inhibition of Piezo1 (GsMTx-4) attenuated plaque formation, decreased the level of inflammation related factors (JNK, TNF-α, NF-κB, VCAM-1) of carotid plaque in atherosclerotic mice. Meanwhile, ox-LDL also upregulates Piezo1 and inflammation proteins (NF-κB, JNK and TNF-α) in endothelium cells (ECs). YAP/TAZ is activated accompanied by the enhanced Piezo1 activity in ECs induced by ox-LDL. Interference by siRNA of Piezo1 abolished the expression of YAP/TAZ and inflammation proteins (JNK, NF-κB and TNF-α). In addition, Ca2+ influx in ECs induced by ox-LDL was increased than control group, Piezo1 siRNA can reduce the calcium content. Piezo1 agonist Yoda1 increased Ca2+ influx and promote YAP nucleus translocation in ECs, genetic deletion of Piezo1 reversed it. Our results indicate that Piezo1 could mediate endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation and nuclear localization. Piezo1 may be a potential therapeutic target for atherosclerotic diseases in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。