Zanubrutinib attenuates bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β1 signaling pathway

扎努布替尼通过抑制 TGF-β1 信号通路减轻博来霉素诱导的肺纤维化

阅读:6
作者:Shanshan Chen, Yuli Wei, Shimeng Li, Yang Miao, Jinying Gu, Yunyao Cui, Zhichao Liu, Jingjing Liang, Luqing Wei, Xiaohe Li, Honggang Zhou, Cheng Yang

Background

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal interstitial lung disease with high mortality and limited treatment. Only two drugs are currently approved for the treatment of IPF, but both have limitations and neither drug could prolong survival time of patients. The etiology of IPF is unclear, but there is growing evidence that B cells and B cell receptor signaling play important roles in the pathogenesis of IPF. Zanubrutinib is a small molecule inhibitor of Bruton's tyrosine kinase (BTK), which is a key enzyme downstream of B cell receptor signaling pathway, has approved for the treatment of mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). While its role in pulmonary fibrosis remains unknown. In this study, we explored the potential effect and mechanisms of zanubrutinib on pulmonary fibrosis in vivo and in vitro.

Conclusions

Zanubrutinib alleviated bleomycin-induced lung fibrosis in mice by inhibiting the TGF-β1 signaling pathway.

Methods

In the in vivo experiments, different doses of zanubrutinib were administered in a mouse model of bleomycin-induced pulmonary fibrosis, and pathological manifestations and lung function indices were evaluated. In vitro experiments were performed using TGF-β1-stimulated fibroblasts to evaluate the effect of zanubrutinib on the activation and autophagy phenotype of fibroblasts and to explore the underlying signaling pathway mechanism.

Results

In vivo experiments demonstrated that zanubrutinib effectively attenuated bleomycin (BLM)-induced pulmonary fibrosis in mice. An in vitro mechanistic study indicated that zanubrutinib suppresses collagen deposition and myofibroblast activation by inhibiting the TGF-β1/Smad pathway and induces autophagy through the TGF-β1/mTOR pathway. Conclusions: Zanubrutinib alleviated bleomycin-induced lung fibrosis in mice by inhibiting the TGF-β1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。