Angiotensin II type-1 receptor-associated protein interacts with transferrin receptor-1 and promotes its internalization

血管紧张素 II 1 型受体相关蛋白与转铁蛋白受体 1 相互作用并促进其内化

阅读:5
作者:Eriko Abe, Akio Yamashita, Keigo Hirota, Takahiro Yamaji, Kengo Azushima, Shingo Urate, Toru Suzuki, Shohei Tanaka, Shinya Taguchi, Shunichiro Tsukamoto, Tatsuki Uehara, Hiromichi Wakui, Kouichi Tamura, Hidehisa Takahashi

Abstract

Kidney fibrosis is a common pathway that leads to chronic kidney disease. Angiotensin II type-1 receptor (AT1R)-associated protein (ATRAP) was originally identified as an AT1R-binding protein. Previously, we reported that systemic knockout of ATRAP exacerbates kidney fibrosis in aged mice. Although these effects of ATRAP appeared to be AT1R-independent actions, the molecular mechanism remains poorly understood. To elucidate the molecular mechanism of ATRAP independent of AT1R, we explored novel ATRAP-interacting proteins. Mass spectrometric analysis of the immunoprecipitants of a Flag-tagged ATRAP complex revealed 376 candidate proteins that potentially interact with ATRAP. Gene ontology analysis revealed that proteins related to vesicle trafficking, membrane transport, and many membrane proteins, including transferrin receptor 1 (TfR1), were enriched. Because TfR1 promotes cellular iron uptake and iron is a key factor involved in kidney fibrosis, we focused on TfR1 and confirmed that it interacts with ATRAP. In addition, our findings revealed that enhanced ATRAP expression decreased cell-surface TfR1 expression without altering the overall cellular TfR1 expression levels. Furthermore, enhanced ATRAP expression attenuated cellular iron levels. Together, our results highlight the role of ATRAP as a suppressor of TfR1 that functions by facilitating TfR1 internalization, which affects iron metabolism and oxidative stress signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。