Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability

Sirtuin5 通过保持核苷酸的可用性来保护结直肠癌免受 DNA 损伤

阅读:4
作者:Hao-Lian Wang #, Yan Chen #, Yun-Qian Wang #, En-Wei Tao, Juan Tan, Qian-Qian Liu, Chun-Min Li, Xue-Mei Tong, Qin-Yan Gao, Jie Hong, Ying-Xuan Chen, Jing-Yuan Fang

Abstract

In our previous study, we reported that sirtuin5 (SIRT5), a member of the NAD+-dependent class III histone deacetylase family, is highly expressed in colorectal cancer (CRC). Herein we show that SIRT5 knockdown impairs the production of ribose-5-phosphate, which is essential for nucleotide synthesis, resulting in continuous and irreparable DNA damage and consequently leading to cell cycle arrest and enhanced apoptosis in CRC cells. These SIRT5 silencing-induced effects can be reversed by nucleoside supplementation. Mechanistically, SIRT5 activates transketolase (TKT), a key enzyme in the non-oxidative pentose phosphate pathway, in a demalonylation-dependent manner. Furthermore, TKT is essential for SIRT5-induced malignant phenotypes of CRC both in vivo and in vitro. Altogether, SIRT5 silencing induces DNA damage in CRC via post-translational modifications and inhibits tumor growth, suggesting that SIRT5 can serve as a promising target for CRC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。