Enhanced CHOLESTEROL biosynthesis promotes breast cancer metastasis via modulating CCDC25 expression and neutrophil extracellular traps formation

增强胆固醇生物合成通过调节 CCDC25 表达和中性粒细胞胞外陷阱形成促进乳腺癌转移

阅读:5
作者:Qiqi Tang #, Beibei Liang #, Lisha Zhang #, Xuhui Li, Hengyu Li, Wei Jing, Yingjie Jiang, Felix Zhou, Jian Zhang, Yanchun Meng, Xinhua Yang, Hao Yang, Gang Huang, Jian Zhao

Abstract

Neutrophil extracellular traps (NETs) has been demonstrated to regulate the metastasis of breast cancer. In this study, we showed that de novo cholesterol biosynthesis induced by ASPP2 depletion in mouse breast cancer cell 4T1 and human breast cancer cell MDA-MB-231 promoted NETs formation in vitro, as well as in lung metastases in mice intravenously injected with ASPP2-deficient 4T1 cells. Simvastatin and berberine (BBR), cholesterol synthesis inhibitors, efficiently blocked ASPP2-depletion induced NETs formation. Cholesterol biosynthesis greatly enhanced Coiled-coil domain containing protein 25 (CCDC25) expression on cancer cells as well as in lung metastases. CCDC25 expression was co-localized with caveolin-1, a lipid raft molecule, and was damped by inhibitor of lipid rafts formation. Our data suggest that cholesterol biosynthesis promotes CCDC25 expression in a lipid raft-dependent manner. Clinically, the expression of CCDC25 was positively correlated with the expression of 3-hydroxy-3-methylglutaryl-CoAreductase (HMRCG), and citrullinated histone H3 (H3cit), in tissues from breast cancer patients. High expression of CCDC25 and HMGCR was related with worse prognosis in breast cancer patients. In conclusion, our study explores a novel mechanism for de novo cholesterol biosynthesis in the regulation of CCDC25 expression, NETs formation and breast cancer metastasis. Targeting cholesterol biosynthesis may be promising therapeutic strategies to treat breast cancer metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。