Histone-targeted Polyplexes Avoid Endosomal Escape and Enter the Nucleus During Postmitotic Redistribution of ER Membranes

组蛋白靶向复合物避免内体逃逸并在内质网膜有丝分裂后重分布期间进入细胞核

阅读:6
作者:Nikki L Ross, Erik V Munsell, Chandran Sabanayagam, Millicent O Sullivan

Abstract

Nonviral gene delivery is a promising therapeutic approach because of its safety and controllability, yet limited gene transfer efficacy is a common issue. Most nonviral strategies rely upon endosomal escape designs; however, endosomal escape is often uncorrelated with improved gene transfer and membranolytic structures are typically cytotoxic. Previously, we showed that histone-targeted polyplexes trafficked to the nucleus through an alternative route involving caveolae and the Golgi and endoplasmic reticulum (ER), using pathways similar to several pathogens. We hypothesized that the efficacy of these polyplexes was due to an increased utilization of native vesicular trafficking as well as regulation by histone effectors. Accordingly, using confocal microscopy and cellular fractionation, we determined that a key effect of histone-targeting was to route polyplexes away from clathrin-mediated recycling pathways by harnessing endomembrane transfer routes regulated by histone methyltransferases. An unprecedented finding was that polyplexes accumulated in Rab6-labeled Golgi/ER vesicles and ultimately shuttled directly into the nucleus during ER-mediated nuclear envelope reassembly. Specifically, super resolution microscopy and fluorescence correlation spectroscopy unequivocally indicated that the polyplexes remained associated with ER vesicles/membranes until mitosis, when they were redistributed into the nucleus. These novel findings highlight alternative mechanisms to subvert endolysosomal trafficking and harness the ER to enhance gene transfer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。