O-GlcNAc transferase regulates excitatory synapse maturity

O-GlcNAc 转移酶调节兴奋性突触成熟

阅读:3
作者:Olof Lagerlöf, Gerald W Hart, Richard L Huganir

Abstract

Experience-driven synaptic plasticity is believed to underlie adaptive behavior by rearranging the way neuronal circuits process information. We have previously discovered that O-GlcNAc transferase (OGT), an enzyme that modifies protein function by attaching β-N-acetylglucosamine (GlcNAc) to serine and threonine residues of intracellular proteins (O-GlcNAc), regulates food intake by modulating excitatory synaptic function in neurons in the hypothalamus. However, how OGT regulates excitatory synapse function is largely unknown. Here we demonstrate that OGT is enriched in the postsynaptic density of excitatory synapses. In the postsynaptic density, O-GlcNAcylation on multiple proteins increased upon neuronal stimulation. Knockout of the OGT gene decreased the synaptic expression of the AMPA receptor GluA2 and GluA3 subunits, but not the GluA1 subunit. The number of opposed excitatory presynaptic terminals was sharply reduced upon postsynaptic knockout of OGT. There were also fewer and less mature dendritic spines on OGT knockout neurons. These data identify OGT as a molecular mechanism that regulates synapse maturity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。