SARS-CoV-2 Causes Brain Damage: Therapeutic Intervention with AZD8797

SARS-CoV-2 导致脑损伤:使用 AZD8797 进行治疗干预

阅读:11
作者:Elif Kervancioglu Demirci, Engin Alp Onen, Erva Sevic Yilmaz, Ayca Karagoz Koroglu, Dilek Akakin

Abstract

Elevated CX3CL1 is associated with severe COVID-19 and neurologic symptoms. We aimed to investigate the potential protective effects of selective CX3CR1 antagonist AZD8797 on SARS-CoV-2-induced neuronal damage, and to identify the underlying mechanisms. K18-hACE2 transgenic mice (n = 37) were randomly divided into control groups and SARS-CoV-2 groups, with and without intraperitoneal administration of vehicle or AZD8797 (2.5 mg/mL/day), following exposure to either a single dose of SARS-CoV-2 inhalation or no exposure. Object recognition and hole board tests were performed to assess memory function. Postinfection 8 days, brain tissues were analyzed for histopathological changes, viral, glial, apoptotic, and other immunohistochemical markers, along with measuring malondialdehyde, glutathione, and myeloperoxidase activities. Serum samples were analyzed for proinflammatory cytokines. The SARS-CoV-2 group showed significant weight loss, neuronal damage, oxidative stress, and impaired object recognition memory, while AZD8797 treatment mitigated some of these effects, especially in weight, apoptosis, glutathione, and MCP-1. Histopathological analyses supported the protective effects of AZD8797 against SARS-CoV-2-induced damage. The CX3CL1-CX3CR1 signaling pathway could offer a promising target for reducing SARS-CoV-2's neurological impact, but additional research is needed to confirm these findings in combination with other therapies and assess the clinical significance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。