Potential pathogenic mechanism of type 1 X-linked lymphoproliferative syndrome caused by a mutation of SH2D1A gene in an infant: A case report

婴儿SH2D1A基因突变致1型X连锁淋巴细胞增生综合征潜在致病机制:1例报道

阅读:5
作者:Yanchun Wang, Yan Wang, Weimin Lu, Lvyan Tao, Yang Xiao, Yuantao Zhou, Xiaoli He, Yu Zhang, Li Li

Background

X-linked lymphoproliferative syndrome (XLP) is a rare X-linked recessive inborn errors of immunity. The pathogenesis of XLP might be related to phophatidylinositol-3-kinase (PI3K)-associated pathways but insight details remain unclear. This study was to study an infant XLP-1 case caused by a mutation in SH2D1A gene, investigate the structural and functional alteration of mutant SAP protein, and explore the potential role of PI3K-associated pathways in the progression of XLP-1.

Conclusions

The mutation c.96G > T in SH2D1A gene caused structural and functional changes in the SAP protein, resulting in XLP-1. The PI3K-AKT-mTOR signaling pathway may play a role in XLP-1 pathogenesis.

Methods

The proband's condition was monitored by laboratory and imagological examinations. Whole exome sequencing and Sanger sequencing were performed to detect the genetic disorder. Bioinformatics tools including PolyPhen-2, SWISS-MODEL and SWISS-PDB Viewer were used to predict the pathogenicity and estimate structural change of mutant protein. Flow cytometry was used to investigate expression of SAP and PI3K-associated proteins.

Results

The proband was diagnosed with XLP-1 caused by a hemizygous mutation c.96G > T in SH2D1A gene resulting in a missense substitution of Arginine to Serine at the site of amino acid 32 (p.R32S). The mutant protein contained a hydrogen bond turnover at the site of mutation and was predicted to be highly pathogenic. Expression of SH2D1A encoded protein SAP was downregulated in proband. The PI3K-AKT-mTOR signaling pathway was fully activated in XLP-1 patients, but it was inactive or only partially activated in healthy people or HLH patients. Conclusions: The mutation c.96G > T in SH2D1A gene caused structural and functional changes in the SAP protein, resulting in XLP-1. The PI3K-AKT-mTOR signaling pathway may play a role in XLP-1 pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。