FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy

FGF21 通过 SIRT1 依赖的自噬促进伤口愈合过程中表皮细胞的迁移和分化

阅读:6
作者:Xixi Chen, Gaozan Tong, Junfu Fan, Yingjie Shen, Nan Wang, Wenjie Gong, Zijing Hu, Kunxuan Zhu, Xiaokun Li, Litai Jin, Weitao Cong, Jian Xiao, Zhongxin Zhu

Background and purpose

Migration and differentiation of epidermal cells are essential for epidermal regeneration during wound healing. Fibroblast growth factor 21 (FGF21) plays key roles in mediating a variety of biological activities. However, its role in skin wound healing remains unknown. Experimental approach: Fgf21 knockout (Fgf21 KO) mice were used to determine the effect of FGF21 on wound healing. The source of FGF21 and its target cells were determined by immunohistochemistry, immunoblotting, and ELISA assay. Moreover, Sirt1flox/flox and Atg7flox/flox mice were constructed and injected with the epidermal-specific Cre virus to elucidate the underlying mechanisms. Migration and differentiation of keratinocytes were evaluated in vitro by cell scratch assays, immunofluorescence, and qRT-RCR. The effects were further assessed when SIRT1, ATG7, ATG5, BECN1, and P53 were silenced. Interactions between SIRT1 and autophagy-related genes were assessed using immunoprecipitation assays. Key

Purpose

Migration and differentiation of epidermal cells are essential for epidermal regeneration during wound healing. Fibroblast growth factor 21 (FGF21) plays key roles in mediating a variety of biological activities. However, its role in skin wound healing remains unknown. Experimental approach: Fgf21 knockout (Fgf21 KO) mice were used to determine the effect of FGF21 on wound healing. The source of FGF21 and its target cells were determined by immunohistochemistry, immunoblotting, and ELISA assay. Moreover, Sirt1flox/flox and Atg7flox/flox mice were constructed and injected with the epidermal-specific Cre virus to elucidate the underlying mechanisms. Migration and differentiation of keratinocytes were evaluated in vitro by cell scratch assays, immunofluorescence, and qRT-RCR. The effects were further assessed when SIRT1, ATG7, ATG5, BECN1, and P53 were silenced. Interactions between SIRT1 and autophagy-related genes were assessed using immunoprecipitation assays. Key

Results

FGF21 was active in fibroblasts and promoted migration and differentiation of keratinocytes following injury. After wounding, SIRT1 expression and autophagosome synthesis were lower in Fgf21 KO mice. Depletion of ATG7 in keratinocytes counteracted the FGF21-induced increases in migration and differentiation, suggesting that autophagy is required for the FGF21-mediated pro-healing effects. Furthermore, epithelial-specific Sirt1 knockout abolished the FGF21-mediated improvements of autophagy and wound healing. Silencing of SIRT1 in keratinocytes, which decreased deacetylation of p53 and autophagy-related proteins, revealed that FGF21-induced autophagy during wound healing was SIRT1-dependent. Conclusions and implications: FGF21 is a key regulator of keratinocyte migration and differentiation during wound healing. FGF21 may be a novel therapeutic target to accelerate would healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。