PLD1 promotes dendritic spine development by inhibiting ADAM10-mediated N-cadherin cleavage

PLD1 通过抑制 ADAM10 介导的 N-钙粘蛋白裂解来促进树突棘发育

阅读:5
作者:Li-Da Luo, Gang Li, Yun Wang

Abstract

Synapses are the basic units of information transmission, processing and integration in the nervous system. Dysfunction of the synaptic development has been recognized as one of the main reasons for mental dementia and psychiatric diseases such as Alzheimer's disease and autism. However, the underlying mechanisms of the synapse formation are far from clear. Here we report that phospholipase D1 (PLD1) promotes the development of dendritic spines in hippocampal neurons. We found that overexpressing PLD1 increases both the density and the area of dendritic spines. On the contrary, loss of function of PLD1, including overexpression of the catalytically-inactive PLD1 (PLD1ci) or knocking down PLD1 by siRNAs, leads to reduction in the spine density and the spine area. Moreover, we found that PLD1 promotes the dendritic spine development via regulating the membrane level of N-cadherin. Further studies showed that the regulation of surface N-cadherin by PLD1 is related with the cleavage of N-cadherin by a member of the disintegrin and metalloprotease family-ADAM10. Taking together, our results indicate a positive role of PLD1 in synaptogenesis by inhibiting the ADAM10 mediated N-cadherin cleavage and provide new therapeutic clues for some neurological diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。