Effects of different types of neonatal pain on somatosensory and cognitive development in male juvenile rats

不同类型的新生儿疼痛对雄性幼年大鼠体感和认知发育的影响

阅读:6
作者:Ru Ling, Yueshu Wang, Wen Zheng, Cuiting Min, Mengying Chen, Dongqing Xia, Xiaonan Li

Background

Premature infants are inevitably exposed to painful events, including repetitive procedures, inflammation, or mixed stimulation that may induce long-term behavioral outcomes. Here, we set up three neonatal painful models to investigate their long-term effect on somatosensation and cognition.

Conclusion

A combination of NP with inflammation occurring in the neonatal period might aggravate the adverse effects of each on somatosensory and cognitive development of rats, the mechanism of which might be associated with the increase of corticosterone secretion and the dysregulation of synaptic molecules.

Methods

Three types of neonatal pain models in rat were set up. Rat pups were randomly assigned to four groups. The needling pain (NP) group received repetitive needle pricks on the paws from the day of birth (PD0) to postnatal day 7 (PD7) to mimic the diagnostic and therapeutic procedures. The inflammatory pain (IP) group received the injection of carrageenan into the left hindpaw at PD3 to induce IP in peripheral tissues. The mixed pain group received a combination of the NP and IP (NIP). The control (CON) group was untreated. We performed behavioral and biochemical testing of juvenile rats (PD21-PD26).

Results

The NIP group showed a longer hypersensitivity than the NP group, when given a secondary inflammatory stimulation. NP led to insensitivity to anxiety-causing stimuli and impairment of fear memory both aggravated by NIP. NP reduced the expression of synapse-related molecules (GluN1/PSD95/GFAP) in the medial prefrontal cortex, and NIP exacerbated this decrease. The corticosterone secretion in the NIP group increased after the behavioral task, compared with those in other three groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。