Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells

晚期糖基化终产物受体特异性小干扰RNA对大鼠原代肝星状细胞肝纤维化的抑制作用

阅读:10
作者:Jin-Rong Xia, Ting-Ting Chen, Wei-Dong Li, Feng-Lin Lu, Juan Liu, Xiao-Gang Cai, Qin Lu, Cui-Ping Yang

Abstract

Specific small interfering RNAs (siRNAs) targeting receptor for advanced glycation end products (RAGE) inhibit the expression of RAGE, α-smooth muscle actin and type I collagen in the T6 hepatic stellate cells (HSCs), indicating that RAGE is important for the activation of HSCs and the expression of collagen. The present study aimed to investigate the effect of specific siRNAs targeting RAGE on the development of hepatic fibrosis (HF), using primary rat HSCs, which were isolated and cultured in vitro. The expression vectors for specific siRNAs targeting RAGE were constructed and transfected into primary rat HSCs. Untreated and nonspecific siRNA-transfected primary rat HSCs served as controls. The expression levels of RAGE, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), laminin (LN), hyaluronic acid (HA) and N-terminal procollagen III propeptide (PIIINP) in primary HSCs were detected by reverse transcription quantitative polymerase chain reaction and western blotting. The mRNA and 42 kD protein expression of RAGE in the pAKD-GR126-transfected primary HSCs were significantly downregulated compared with those in the untreated and the pAKD-negative control (NC)-transfected controls. The mRNA and protein expression levels of IL-6, TNF-α, TGF-β1, CTGF, LN, HA and PIIINP in the pAKD-GR126-transfected primary HSCs were also markedly downregulated compared with those in the untreated and pAKD-NC-transfected controls. Therefore, RAGE-specific siRNAs inhibited the expression of RAGE in primary rat HSCs and inhibited the development of HF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。