Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant

筛选针对 AMD 高风险 Y402H 补体因子 H 变体的 CRISPR/Cas 碱基编辑器

阅读:5
作者:Minh Thuan Nguyen Tran, Mohd Khairul Nizam Mohd Khalid, Alice Pébay, Anthony L Cook, Helena H Liang, Raymond C B Wong, Jamie E Craig, Guei-Sheung Liu, Sandy S Hung, Alex W Hewitt

Conclusions

CRISPR-mediated base editing can be used to facilitate a permanent and stably inherited cytosine-to-thymine nucleotide correction of the rs1061170 SNP in the CFH gene with minimal off-target effects.

Methods

A human embryonic kidney cell line (HEK293A) was engineered to contain the pathogenic risk variant for AMD (HEK293A-CFH). Several different base editor constructs (BE3, SaBE3, SaKKH-BE3, VQR-BE3, and Target-AID) and their respective single-guide RNA (sgRNA) expression cassettes targeting either the pathogenic risk variant allele in the CFH locus or the LacZ gene, as a negative control, were evaluated head-to-head for the incidence of a cytosine-to-thymine nucleotide correction. The base editor construct that showed appreciable editing activity was selected for further assessment in which the base-edited region was subjected to next-generation deep sequencing to quantify on-target and off-target editing efficacy.

Purpose

To evaluate the efficacy of using a CRISPR/Cas-mediated strategy to correct a common high-risk allele that is associated with age-related macular degeneration (AMD; rs1061170; NM_000186.3:c.1204T>C; NP_000177.2:p.His402Tyr) in the complement factor H (CFH) gene.

Results

The tandem use of the Target-AID base editor and its respective sgRNA demonstrated a base editing efficiency of facilitating a cytosine-to-thymine nucleotide correction in 21.5% of the total sequencing reads. Additionally, the incidence of insertions and deletions (indels) was detected in only 0.15% of the sequencing reads with virtually no off-target effects evident across the top 11 predicted off-target sites containing at least one cytosine in the activity window (n = 3, pooled amplicons). Conclusions: CRISPR-mediated base editing can be used to facilitate a permanent and stably inherited cytosine-to-thymine nucleotide correction of the rs1061170 SNP in the CFH gene with minimal off-target effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。