RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11

RBMS1 通过控制 SLC7A11 的翻译来调节肺癌铁死亡

阅读:6
作者:Wenjing Zhang, Yu Sun, Lu Bai, Lili Zhi, Yun Yang, Qingzhi Zhao, Chaoqun Chen, Yangfan Qi, Wenting Gao, Wenxia He, Luning Wang, Dan Chen, Shujun Fan, Huan Chen, Hai-Long Piao, Qinglong Qiao, Zhaochao Xu, Jinrui Zhang, Jinyao Zhao, Sirui Zhang, Yue Yin, Chao Peng, Xiaoling Li, Quentin Liu, Han Liu, Y

Abstract

Ferroptosis, an iron-dependent nonapoptotic cell death, is a highly regulated tumor suppressing process. However, functions and mechanisms of RNA-binding proteins in regulation of evasion of ferroptosis during lung cancer progression are still largely unknown. Here, we report that the RNA-binding protein RBMS1 participates in lung cancer development via mediating ferroptosis evasion. Through an shRNA-mediated systematic screen, we discovered that RBMS1 is a key ferroptosis regulator. Clinically, RBMS1 was elevated in lung cancer and its high expression was associated with reduced patient survival. Conversely, depletion of RBMS1 inhibited lung cancer progression both in vivo and in vitro. Mechanistically, RBMS1 interacted with the translation initiation factor eIF3d directly to bridge the 3'- and 5'-UTR of SLC7A11. RBMS1 ablation inhibited the translation of SLC7A11, reduced SLC7A11-mediated cystine uptake, and promoted ferroptosis. In a drug screen that targeted RBMS1, we further uncovered that nortriptyline hydrochloride decreased the level of RBMS1, thereby promoting ferroptosis. Importantly, RBMS1 depletion or inhibition by nortriptyline hydrochloride sensitized radioresistant lung cancer cells to radiotherapy. Our findings established RBMS1 as a translational regulator of ferroptosis and a prognostic factor with therapeutic potential and clinical value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。