Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury

Bax抑制肽对新生儿脑损伤的神经保护作用

阅读:5
作者:Xiaoyang Wang, Wei Han, Xiaonan Du, Changlian Zhu, Ylva Carlsson, Carina Mallard, Etienne Jacotot, Henrik Hagberg

Background and purpose

Mitochondria play a critical role in mediating cell death in both the adult and immature brain. The cyclophilin D mitochondrial membrane permeability transition pore is critical in adult ischemia, whereas in neonatal hypoxic-ischemic (HI) brain injury, mitochondrial permeabilization appears to be primarily Bax-dependent. The aim of this study was to evaluate the neuroprotective effect of a cell-penetrating Bax-inhibiting peptide (BIP) on neonatal mouse HI brain injury.

Conclusions

Bax inhibition provides neuroprotection and functional improvement in a neonatal mouse model of HI.

Methods

BIP (5 microL, 5 mg/mL) or a BIP-negative control (5 microL, 5 mg/mL) was injected intracerebroventricularly immediately before HI in postnatal day 9 mice. Mice were euthanized at different time points after HI for evaluation of brain injury, Bax activation, release of proapoptotic proteins, and caspase activation. The trace fear conditioning and cylinder tests were performed for evaluation of the functional recovery after BIP treatment.

Purpose

Mitochondria play a critical role in mediating cell death in both the adult and immature brain. The cyclophilin D mitochondrial membrane permeability transition pore is critical in adult ischemia, whereas in neonatal hypoxic-ischemic (HI) brain injury, mitochondrial permeabilization appears to be primarily Bax-dependent. The aim of this study was to evaluate the neuroprotective effect of a cell-penetrating Bax-inhibiting peptide (BIP) on neonatal mouse HI brain injury.

Results

At 5 days after HI, there was a 41.2% reduction of brain injury in BIP-treated mice compared with BIP-negative control treated animals. Myelin basic protein and neurofilament quantification revealed that BIP reduced white matter injury. BIP treatment conferred improvement in both sensorimotor and memory functions at 7 weeks after HI. BIP protection was associated with a reduction of Bax activation, mitochondrial permeabilization, and downstream caspase activation. Conclusions: Bax inhibition provides neuroprotection and functional improvement in a neonatal mouse model of HI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。