Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method

基于空间效应的化学富集方法全面分析精氨酸二甲基化在调节蛋白质相分离中的作用

阅读:8
作者:Qi Wang, Zhouxian Li, Shenqing Zhang, Yichen Li, Yan Wang, Zheng Fang, Yanni Ma, Zhen Liu, Weibing Zhang, Dan Li, Cong Liu, Mingliang Ye

Abstract

Protein arginine methylation plays an important role in regulating protein functions in different cellular processes, and its dysregulation may lead to a variety of human diseases. Recently, arginine methylation was found to be involved in modulating protein liquid-liquid phase separation (LLPS), which drives the formation of different membraneless organelles (MLOs). Here, we developed a steric effect-based chemical-enrichment method (SECEM) coupled with liquid chromatography-tandem mass spectrometry to analyze arginine dimethylation (DMA) at the proteome level. We revealed by SECEM that, in mammalian cells, the DMA sites occurring in the RG/RGG motifs are preferentially enriched within the proteins identified in different MLOs, especially stress granules (SGs). Notably, global decrease of protein arginine methylation severely impairs the dynamic assembly and disassembly of SGs. By further profiling the dynamic change of DMA upon SG formation by SECEM, we identified that the most dramatic change of DMA occurs at multiple sites of RG/RGG-rich regions from several key SG-contained proteins, including G3BP1, FUS, hnRNPA1, and KHDRBS1. Moreover, both in vitro arginine methylation and mutation of the identified DMA sites significantly impair LLPS capability of the four different RG/RGG-rich regions. Overall, we provide a global profiling of the dynamic changes of protein DMA in the mammalian cells under different stress conditions by SECEM and reveal the important role of DMA in regulating protein LLPS and SG dynamics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。