Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells

多价表观遗传标记赋予卵巢癌细胞微环境反应的表观遗传可塑性

阅读:4
作者:Sharmila A Bapat, Victor Jin, Nicholas Berry, Curt Balch, Neeti Sharma, Nawneet Kurrey, Shu Zhang, Fang Fang, Xun Lan, Meng Li, Brian Kennedy, Robert M Bigsby, Tim H M Huang, Kenneth P Nephew

Abstract

"Epigenetic plasticity" refers to the capability of mammalian cells to alter their differentiation status via chromatin remodeling-associated alterations in gene expression. While epigenetic plasticity has been best associated with lineage commitment of embryonic stem cells, recent studies have demonstrated chromatin remodeling even in terminally differentiated normal cells, and advanced-stage melanoma and breast cancer cells, in context-dependent responses to alterations in their microenvironment. In the current study, we extend this attribute of epigenetic plasticity to aggressive ovarian cancer cells, by using an integrative approach to associate cellular phenotypes with chromatin modifications ("ChIP-chip") and mRNA and microRNA expression. While we identified numerous gene promoters possessing the well-known "bivalent mark" of H3K27me3/H3K4me2, we also report 14 distinct, lesser-known bi-, tri-, and tetravalent combinations of activating and repressive chromatin modifications, in platinum-resistant CP70 ovarian cancer cells. The vast majority (>90%) of all the histone marks studied localized to regions within 2000 bp of transcription start sites, supporting a role in gene regulation. Upon a simple alteration in the microenvironment, transition from two- to three-dimensional culture, an increase (17% to 38%) in repressive-only marked promoters was observed, concomitant with a decrease (31% to 21%) in multivalent (i.e., juxtaposed permissive and repressive histone marked) promoters. Like embryonic/tissue stem and other (non-ovarian) carcinoma cells, ovarian cancer cell epigenetic plasticity reflects an inherent transcriptional flexibility for context-responsive alterations in phenotype. It is possible that this plasticity could be therapeutically exploited for the management of this lethal gynecologic malignancy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。