Maternal DCAF13 Regulates Chromatin Tightness to Contribute to Embryonic Development

母体DCAF13调节染色质紧密性以促进胚胎发育

阅读:5
作者:Yang Liu, Long-Wen Zhao, Jing-Ling Shen, Heng-Yu Fan, Yan Jin

Abstract

Maternal-zygotic transition (MZT) is critical for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stage of embryogenesis. However, the spatiotemporal dynamic regulation of MZT by maternal factors is largely unknown. Here, we reported a novel maternal factor, DCAF13, which was highly expressed in growing oocyte nucleolus and had key maternal effects on oocyte and zygotic chromatin tightness during maternal to zygotic transition. DCAF13 specifically deleted in oocytes resulted in loose chromatin structure in fully grown germinal vesicle oocytes. Despite normal nuclear maturation in maternal DCAF13-deleted oocytes, the chromosomes at MII stage were not properly condensed. Consequently, the nuclear and nucleolar structure reorganized abnormally, and transcription was inactive in zygotic embryos. RNA-seq analysis of MII oocytes and 2-cell embryos demonstrated that the transcriptomes between knockout and control oocyte were similar, but the maternal DCAF13 deleted two-cell embryos showed a significant decrease in transcription. In addition, the maternal DCAF13-deleted embryos displayed arrest at the two-cell stage, which could not be rescued by injecting flag-Dcaf13 mRNA in the zygote. This revealed that DCAF13 was a unique maternal effect factor regulating the nucleolus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。