CELLULAR, A Cell Autophagy Imaging Dataset

CELLULAR,细胞自噬成像数据集

阅读:5
作者:Amani Al Outa #, Steven Hicks #, Vajira Thambawita #, Siri Andresen, Jorrit M Enserink, Pål Halvorsen, Michael A Riegler #, Helene Knævelsrud #

Abstract

Cells in living organisms are dynamic compartments that continuously respond to changes in their environment to maintain physiological homeostasis. While basal autophagy exists in cells to aid in the regular turnover of intracellular material, autophagy is also a critical cellular response to stress, such as nutritional depletion. Conversely, the deregulation of autophagy is linked to several diseases, such as cancer, and hence, autophagy constitutes a potential therapeutic target. Image analysis to follow autophagy in cells, especially on high-content screens, has proven to be a bottleneck. Machine learning (ML) algorithms have recently emerged as crucial in analyzing images to efficiently extract information, thus contributing to a better understanding of the questions at hand. This paper presents CELLULAR, an open dataset consisting of images of cells expressing the autophagy reporter mRFP-EGFP-Atg8a with cell-specific segmentation masks. Each cell is annotated into either basal autophagy, activated autophagy, or unknown. Furthermore, we introduce some preliminary experiments using the dataset that can be used as a baseline for future research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。