Detection of microRNA expression levels based on microarray analysis for classification of idiopathic pulmonary fibrosis

基于微阵列分析的microRNA表达水平检测对特发性肺纤维化的分类

阅读:6
作者:Qilong Li, Mohan Li, Kexin Zheng, Hong Li, Hong Yang, Shiliang Ma, Ming Zhong

Abstract

The etiology and pathophysiological mechanisms of idiopathic pulmonary fibrosis (IPF) are yet to be fully elucidated; however, mining of disease-related microRNAs (miRNAs/miRs) has improved the understanding of the progression of IPF. The aim of the current study was to screen miRNAs associated with IPF using three mathematical algorithms: One-way ANOVA, least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE). Using ANOVA, three miRNAs and two miRNAs were selected with opposite expression patterns in moderate and severe IPF, respectively. In total, two algorithms, LASSO and SVM-RFE, were used to perform feature selection of miRNAs. miRNAs from patients were also extracted from formalin-fixed paraffin-embedded tissues and detected using reverse transcription-quantitative PCR (RT-qPCR). The intersection of the three algorithms (ANOVA, LASSO and SVM-RFE) was taken as the final result of the miRNA candidates. Three miRNA candidates, including miR-124, hsa-miR-524-5p and hsa-miR-194 were therefore used as biomarkers. The receiver operating characteristic model demonstrated favorable discrimination between IPF and control groups, with an area under the curve of 78.5%. Moreover, RT-qPCR results indicated that miR-124, hsa-miR-524-5p, hsa-miR-194 and hsa-miR-133a were differentially expressed between patients with IPF and age-matched men without fibrotic lung disease. The target genes of these miRNAs were further predicted and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed. Collectively, the present results suggested that the identified miRNAs associated with IPF may be useful biomarkers for the diagnosis of this disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。