SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene

妊娠期间 SK3 通道表达受雌激素和 Sp 因子介导的 KCNN3 基因转录控制调节

阅读:5
作者:Stephanie L Pierce, Sarah K England

Abstract

Overexpression of the small-conductance calcium-activated K(+) channel 3 (SK3) in transgenic mice compromises parturition, suggesting that the SK3 channel plays a role in pregnancy. In wild-type mouse myometrium, expression of SK3 transcript and protein is significantly reduced during pregnancy, but the mechanism(s) responsible for this attenuation of channel expression is unknown. The promoter region of the SK3-encoding mouse KCNN3 gene contains two binding sites for specificity protein (Sp) transcription factors, two of which are expressed in the uterus: Sp1, which enhances gene transcription in response to estrogen; and Sp3, which competes for the same binding motif as Sp1 and can repress gene expression. We investigated the hypothesis that Sp1 and Sp3 regulate SK3 channel expression during pregnancy. In mouse myometrium, Sp1 expression was reduced during late gestation, whereas Sp3 expression levels were constant throughout pregnancy. Using a reporter system, we found that Sp1 overexpression resulted in a significant increase in SK3 promoter activation and that Sp3 cotransfection reduced promoter activation to basal levels. These findings indicate that Sp3 outcompetes Sp1 to decrease SK3 transcription. To determine whether high levels of estrogen in vivo can affect the regulation of SK3 protein levels by Sp factors, ovariectomized mice were implanted with a 17β-estradiol or placebo pellet for 3 wk; estrogen-treated mice had reduced uterine SK3 protein expression compared with placebo-treated counterparts. In human myometrial cells overexpressing Sp1, estrogen treatment stimulated expression of the SK3 transcript. Overall, our findings indicate that Sp1 and Sp3 compete to regulate SK3 channel expression during pregnancy in response to stimulation by estrogen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。