Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease

基于液相色谱-质谱法的人类和小鼠模型血清平行代谢分析揭示了与非酒精性脂肪性肝病进展相关的假定生物标志物

阅读:5
作者:Jonathan Barr, Mercedes Vázquez-Chantada, Cristina Alonso, Miriam Pérez-Cormenzana, Rebeca Mayo, Asier Galán, Juan Caballería, Antonio Martín-Duce, Albert Tran, Conrad Wagner, Zigmund Luka, Shelly C Lu, Azucena Castro, Yannick Le Marchand-Brustel, M Luz Martínez-Chantar, Nicolas Veyrie, Karine Cléme

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in most western countries. Current NAFLD diagnosis methods (e.g., liver biopsy analysis or imaging techniques) are poorly suited as tests for such a prevalent condition, from both a clinical and financial point of view. The present work aims to demonstrate the potential utility of serum metabolic profiling in defining phenotypic biomarkers that could be useful in NAFLD management. A parallel animal model/human NAFLD exploratory metabolomics approach was employed, using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) to analyze 42 serum samples collected from nondiabetic, morbidly obese, biopsy-proven NAFLD patients, and 17 animals belonging to the glycine N-methyltransferase knockout (GNMT-KO) NAFLD mouse model. Multivariate statistical analysis of the data revealed a series of common biomarkers that were significantly altered in the NAFLD (GNMT-KO) subjects in comparison to their normal liver counterparts (WT). Many of the compounds observed could be associated with biochemical perturbations associated with liver dysfunction (e.g., reduced Creatine) and inflammation (e.g., eicosanoid signaling). This differential metabolic phenotyping approach may have a future role as a supplement for clinical decision making in NAFLD and in the adaption to more individualized treatment protocols.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。