Mitochondria-coupled glucose phosphorylation develops after birth to modulate H2 O2 release and calcium handling in rat brain

线粒体偶联葡萄糖磷酸化在出生后发育,调节大鼠脑中的 H2 O2 释放和钙处理

阅读:6
作者:Eduardo de-Souza-Ferreira, Izac Miranda Rios-Neto, Eduarda Lopes Martins, Antonio Galina

Abstract

The adult brain is a high-glucose and oxygen-dependent organ, with an extremely organized network of cells and large energy-consuming synapses. To reach this level of organization, early stages in development must include an efficient control of cellular events and regulation of intracellular signaling molecules and ions such as hydrogen peroxide (H2 O2 ) and calcium (Ca2+ ), but in cerebral tissue, these mechanisms of regulation are still poorly understood. Hexokinase (HK) is the first enzyme in the metabolism of glucose and, when bound to mitochondria (mtHK), it has been proposed to have a role in modulation of mitochondrial H2 O2 generation and Ca2+ handling. Here, we have investigated how mtHK modulates these signals in the mitochondrial context during postnatal development of the mouse brain. Using high-resolution respirometry, western blot analysis, spectrometry and resorufin, and Calcium Green fluorescence assays with brain mitochondria purified postnatally from day 1 to day 60, we demonstrate that brain HK increases its coupling to mitochondria and to oxidative phosphorylation to induce a cycle of ADP entry/ATP exit of the mitochondrial matrix that leads to efficient control over H2 O2 generation and Ca2+ uptake during development until reaching plateau at day 21. This contrasts sharply with the antioxidant enzymes, which do not increase as mitochondrial H2 O2 generation escalates. These results suggest that, as its use of glucose increases, the brain couples HK to mitochondria to improve glucose metabolism, redox balance and Ca2+ signaling during development, positioning mitochondria-bound hexokinase as a hub for intracellular signaling control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。