Decellularizing the Porcine Optic Nerve Head: Toward a Model to Study the Mechanobiology of Glaucoma

猪视神经头脱细胞:建立青光眼机械生物学研究模型

阅读:10
作者:Jr-Jiun Liou, Michelle D Drewry, Ashlinn Sweeney, Bryan N Brown, Jonathan P Vande Geest

Conclusions

Our decellularized ONH model is capable of producing scaffolds that are cell-free and maintain the native ECM microstructure. Translational relevance: This model represents a platform to study the mechanobiology in the ONH and potentially for glaucoma drug testing.

Methods

Porcine posterior poles were decellularized using a detergent and enzyme-based decellularization protocol. DNA quantification and histology were used to investigate the effectiveness of the protocol. We subsequently investigated the ability of a polyethylene glycol (PEG)-based hydrogel to restore the ONH's ability to hold pressure following decellularization. Anterior-posterior displacement of the decellularized and PEG treated ONH in a pressure bioreactor was used to evaluate the biomechanical response of the ONH.

Purpose

Studying the extracellular matrix (ECM) remodeling of the lamina cribrosa in vivo can be extremely challenging and costly. There exist very few options for studying optic nerve head (ONH) mechanobiology in vitro that are able to reproduce the complex anatomic and biomechanical environment of the ONH. Herein, we have developed a decellularization procedure that will enable more anatomically relevant and cost-efficient future studies of ECM remodeling of the ONH.

Results

DNA quantification and histology confirmed decellularization using Triton X-100 at low concentration for 48 hours successfully reduced the cellular content of the tissue by 94.9% compared with native tissue while preserving the ECM microstructure and basal lamina of the matrix. Infiltrating the decellularized tissues with PEG 6000 and PEG 10,000 hydrogel restored their ability to hold pressure, producing displacements similar to those measured for the non-decellularized control samples. Conclusions: Our decellularized ONH model is capable of producing scaffolds that are cell-free and maintain the native ECM microstructure. Translational relevance: This model represents a platform to study the mechanobiology in the ONH and potentially for glaucoma drug testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。