Plinabulin, an inhibitor of tubulin polymerization, targets KRAS signaling through disruption of endosomal recycling

普那布林是一种微管蛋白聚合抑制剂,通过破坏内体循环来靶向 KRAS 信号

阅读:9
作者:Patrick J Cimino, Lan Huang, Lihua Du, Yanping Wu, Jamie Bishop, Jessica Dalsing-Hernandez, Kari Kotlarczyk, Paul Gonzales, Jennifer Carew, Steffan Nawrocki, Mary Ann Jordan, Leslie Wilson, G Kenneth Lloyd, Hans-Georg Wirsching

Abstract

Constitutive activation of Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most common oncogenic event in certain types of human cancer and is associated with poor patient survival. Small molecule signaling inhibitors have improved the clinical outcomes of patients with various cancer types but attempts to target KRAS have been unsuccessful. Plinabulin represents a novel class of agents that inhibit tubulin polymerization with a favorable safety profile in clinical trials. In the present study, the potency of plinabulin to inhibit tubulin polymerization and growth of KRAS-driven cancer cells was characterized. In vivo efficacy of plinabulin was tested in two different mouse models; one being the RCAS/t-va gene transfer system and the other being a xenograft model. In vitro cell culture tubulin polymerization assays were used to complement the mouse models. There was improved survival in a KRAS-driven mouse gene transfer glioma model, but lack of benefit in a similar model, without constitutively active KRAS, which supports the notion of a KRAS-specific effect. This survival benefit was mediated, at least in part, by the ability of plinabulin to inhibit tubulin polymerization and disrupt endosomal recycling. It was proposed a mechanism of compromised endosomal recycling of displaced KRAS through targeting microtubules that yields inhibition of protein kinase B, but not extracellular signal regulated kinase (ERK) signaling, therefore lending rationale to combination treatments of tubulin- and ERK-targeting agents in KRAS-driven cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。