Effects of (-)-epicatechin on myocardial infarct size and left ventricular remodeling after permanent coronary occlusion

(-)-表儿茶素对永久性冠状动脉闭塞后心肌梗死面积和左心室重塑的影响

阅读:6
作者:Katrina Go Yamazaki, Pam R Taub, Maraliz Barraza-Hidalgo, Maria M Rivas, Alexander C Zambon, Guillermo Ceballos, Francisco J Villarreal

Background

(-)-epicatechin reduces blood pressure in hypertensive patients and limits infarct size in animal models of myocardial ischemia-reperfusion injury. However, nothing is known about its effects on infarction after PCO.

Conclusions

These results demonstrate the unique capacity of (-)-epicatechin to confer cardioprotection in the setting of a severe form of myocardial ischemic injury. Protection is sustained over time and preserves LV structure and function. The cardioprotective mechanism(s) of (-)-epicatechin seem to be unrelated to AKT or ERK activation. (-)-epicatechin warrants further investigation as a cardioprotectant.

Methods

(-)-epicatechin (1 mg/kg daily) treatment was administered via oral gavage to 250 g male rats for 10 days before PCO and was continued afterward. The PCO controls received water. Sham animals underwent thoracotomy and treatment in the absence of PCO. Immunoblots assessed AKT/ERK involvement 2 h after PCO. The LV morphometric features and function were measured 48 h and 3 weeks after PCO.

Results

In the 48-h group, treatment reduced infarct size by 52%. There were no differences in hemodynamics among the different groups (heart rate and aortic and LV pressures). Western blots revealed no differences in AKT or ERK phosphorylation levels. At 3 weeks, PCO control animals demonstrated significant increases in LV end-diastolic pressure, heart and body weight, and LV chamber diameter versus sham. The PCO plus (-)-epicatechin group values were comparable with those of the sham plus (-)-epicatechin group. Treatment resulted in a 33% decrease in myocardial infarction size. The LV pressure-volume curves demonstrated a right shift in control PCO animals, whereas the (-)-epicatechin curves were comparable with those of the sham group. The LV scar area strains were significantly improved with (-)-epicatechin. Conclusions: These results demonstrate the unique capacity of (-)-epicatechin to confer cardioprotection in the setting of a severe form of myocardial ischemic injury. Protection is sustained over time and preserves LV structure and function. The cardioprotective mechanism(s) of (-)-epicatechin seem to be unrelated to AKT or ERK activation. (-)-epicatechin warrants further investigation as a cardioprotectant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。