MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis

MicroRNA-34c 通过 CXC 基序配体 14/Janus 激酶 2/信号转导和转录激活因子-3 轴促进脊髓损伤大鼠的神经元恢复

阅读:4
作者:Juan Shen, Feng Gao, Lin Zhao, Qin Hao, Yan-Ling Yang

Background

Developing effective spinal cord repair strategies for spinal cord injury (SCI) is of great importance. Emerging evidence suggests that microRNAs (miRNAs) are closely linked to SCI recovery. This study aimed to investigate the function of miR-34c in the neuronal recovery in rats with SCI.

Conclusion

The study provided evidence that miR-34c could promote neuronal recovery in rats with SCI through inhibiting CXCL14 expression and inactivating the JAK2/STAT3 pathway. This study may offer new insights into SCI treatment.

Methods

A rat model with SCI was established. Differentially expressed miRNAs were identified by a microarray analysis. MiR-34c expression in rats was measured by reverse transcription quantitative polymerase chain reaction. Altered expression of miR-34c or C-X-C motif ligand 14 (CXCL14) was introduced in SCI rats to measure their roles in neuronal recovery. Western blot analysis was performed to determine the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription-3 (STAT3). Neuronal apoptosis in rat spinal cord tissues was detected. The concentrations of SCI recovery-related proteins thyrotropin releasing hormone (TRH), prostacyclin (PGI2), and ganglioside (GM) were evaluated by enzyme-linked immunosorbent assay. Data were analyzed using a t-test with a one-way or two-way analysis of variance.

Results

Rats with SCI presented decreased grip strength (112.03 ± 10.64 vs. 17.32 ± 1.49 g, P < 0.01), decreased miR-34c expression (7 days: 3.78 ± 0.44 vs. 0.95 ± 0.10, P < 0.05), and increased CXCL14 expression (7 days: 0.61 ± 0.06 vs. 2.91 ± 0.27, P < 0.01). MiR-34c was found to directly bind to CXCL14. Overexpression of miR-34c increased grip strength (11.23 ± 1.08 vs. 31.26 ± 2.99 g, P < 0.01) and reduced neuronal apoptosis in spinal cord tissues (53.61% ± 6.07% vs. 24.59% ± 3.32%, P < 0.01), and silencing of CXCL14 also increased the grip strength (12.76 ± 1.13 vs. 29.77 ± 2.75 g, P < 0.01) and reduced apoptosis in spinal cord tissues (55.74% ± 6.24% vs. 26.75% ± 2.84%, P < 0.01). In addition, miR-34c upregulation or CXCL14 downregulation increased the concentrations of TRH, PGI2, and GM, and reduced phosphorylation of JAK2 and STAT3 in rats with SCI (all P < 0.01).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。