Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1

人类 Activin-A 受体 II 型样激酶 1 (ACVRL1) 启动子的表征及其受 Sp1 调控

阅读:7
作者:Eva M Garrido-Martin, Francisco J Blanco, Africa Fernandez-L, Carmen Langa, Calvin P Vary, Ursula E Lee, Scott L Friedman, Luisa M Botella, Carmelo Bernabeu

Background

Activin receptor-like kinase 1 (ALK1) is a Transforming Growth Factor-beta (TGF-beta) receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1) give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1. Here, we have studied the different origins of ACVRL1 transcription, we have analyzed in silico its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of ACVRL1.

Conclusions

Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into the molecular mechanisms that contribute to the expression of ACVRL1 gene. Moreover, our data show that the methylation status of CpG islands markedly modulates the Sp1 regulation of ACVRL1 gene transcriptional activity.

Results

We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE) of ACVRL1 transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of ACVRL1 (-1,035/+210) was analyzed in silico, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, ACVRL1 promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of ACVRL1 transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of ACVRL1 in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in ACVRL1 transcription, whereas in vitro hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of ACVRL1. Conclusions: Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into the molecular mechanisms that contribute to the expression of ACVRL1 gene. Moreover, our data show that the methylation status of CpG islands markedly modulates the Sp1 regulation of ACVRL1 gene transcriptional activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。