Adsorption characteristics of nickel (II) from aqueous solutions by Zeolite Scony Mobile-5 (ZSM-5) incorporated in sodium alginate beads

掺入海藻酸钠珠粒的 Scony Mobile-5 沸石 (ZSM-5) 对水溶液中镍 (II) 的吸附特性

阅读:6
作者:Mohamed S Hellal, Ahmed M Rashad, Kishore K Kadimpati, Sayed K Attia, Mariam E Fawzy

Abstract

Nickel, a prevalent metal in the ecosystem, is released into the environment through various anthropogenic activities, leading to adverse effects. This research explored utilizing zeolite scony mobile-5 (ZSM-5) nanoparticles encapsulated in sodium alginate (SA) for nickel (II) removal from aqueous solutions. The adsorption characteristics of SA/ZSM-5 were examined concerning contact duration, initial metal ion concentration, pH level, temperature, and sorbent dosage. The findings revealed that a rising pH reduced Ni (II) uptake by the sorbent while increasing the Ni (II) concentration from 25 to 100 mg L-1 led to a decrease in removal percentage from 91 to 80% under optimal conditions. Furthermore, as sorbent dosage increased from 4 to 16 g L-1, uptake capacity declined from 9.972 to 1.55 mg g-1. Concurrently, SA/ZSM-5 beads' Ni (II) sorption capacity decreased from 96.12 to 59.14% with a temperature increase ranging from 25 to 55 °C. The Ni (II) sorption data on SA/ZSM-5 beads are aptly represented by Langmuir and Freundlich equilibrium isotherm models. Moreover, a second-order kinetic model characterizes the adsorption kinetics of Ni (II) on the SA/ZSM-5 beads. A negative free energy change (ΔG°) demonstrates that the process is both viable and spontaneous. The negative enthalpy values indicate an exothermic nature at the solid-liquid interface while negative entropy values suggest a decrease in randomness. In conclusion, this novel adsorbent exhibits promise for removing nickel from aqueous solutions and could potentially be employed in small-scale industries under similar conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。