Functional Hybrid Materials Based on Manganese Dioxide and Lignin Activated by Ionic Liquids and Their Application in the Production of Lithium Ion Batteries

离子液体活化二氧化锰和木质素基功能杂化材料及其在锂离子电池生产中的应用

阅读:7
作者:Łukasz Klapiszewski, Tadeusz J Szalaty, Beata Kurc, Małgorzata Stanisz, Andrzej Skrzypczak, Teofil Jesionowski

Abstract

Kraft lignin (KL) was activated using selected ionic liquids (ILs). The activated form of the biopolymer, due to the presence of carbonyl groups, can be used in electrochemical tests. To increase the application potential of the system in electrochemistry, activated lignin forms were combined with manganese dioxide, and the most important physicochemical and morphological-microstructural properties of the novel, functional hybrid systems were determined using Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), scanning electron microscopy (SEM), zeta potential analysis, thermal stability (TGA/DTG) and porous structure analysis. An investigation was also made of the practical application of the hybrid materials in the production of lithium ion batteries. The capacity of the anode (MnO&sub2;/activated lignin), working at a low current regime of 50 mA·g-1, was ca. 610 mAh·g-1, while a current of 1000 mA·g-1 resulted in a capacity of 570 mAh·g-1. Superior cyclic stability and rate capability indicate that this may be a promising electrode material for use in high-performance lithium ion batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。