Production of Siamenoside I and Mogroside IV from Siraitia grosvenorii Using Immobilized β-Glucosidase

利用固定化 β-葡萄糖苷酶从罗汉果中生产赛门苷 I 和罗汉果苷 IV

阅读:6
作者:Hung-Yueh Chen, Ching-Hsiang Lin, Chih-Yao Hou, Hui-Wen Lin, Chang-Wei Hsieh, Kuan-Chen Cheng

Abstract

Siraitia grosvenorii is a type of fruit used in traditional Chinese medicine. Previous studies have shown that the conversion of saponins was often carried out by chemical hydrolysis, which can be problematic because of the environmental hazards it may cause and the low yield it produces. Therefore, the purpose of this study is to establish a continuous bioreactor with immobilized enzymes to produce siamenoside I and mogroside IV. The results show that the immobilization process of β-glucosidase exhibited the best relative activity with a glutaraldehyde (GA) concentration of 1.5%, carrier activation time of 1 h and binding enzyme time of 12 h. After the immobilization through GA linkage, the highest relative activity of β-glucosidase was recorded through the reaction with the substrate at 60 °C and pH 5. Subsequently, the glass microspheres with immobilized β-glucosidase were filled into the reactor to maintain the optimal active environment, and the aqueous solution of Siraitia grosvenorii extract was introduced by controlling the flow rate. The highest concentration of siamenoside I and mogroside IV were obtained at a flow rate of 0.3 and 0.2 mL/min, respectively. By developing this immobilized enzyme system, siamenoside I and mogroside IV can be prepared in large quantities for industrial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。