Spatial protein analysis in developing tissues: a sampling-based image processing approach

发育组织中的空间蛋白质分析:基于采样的图像处理方法

阅读:8
作者:Karolis Leonavicius, Christophe Royer, Antonio M A Miranda, Richard C V Tyser, Annemarie Kip, Shankar Srinivas

Abstract

Advances in fluorescence microscopy approaches have made it relatively easy to generate multi-dimensional image volumes and have highlighted the need for flexible image analysis tools for the extraction of quantitative information from such data. Here we demonstrate that by focusing on simplified feature-based nuclear segmentation and probabilistic cytoplasmic detection we can create a tool that is able to extract geometry-based information from diverse mammalian tissue images. Our open-source image analysis platform, called 'SilentMark', can cope with three-dimensional noisy images and with crowded fields of cells to quantify signal intensity in different cellular compartments. Additionally, it provides tissue geometry related information, which allows one to quantify protein distribution with respect to marked regions of interest. The lightweight SilentMark algorithms have the advantage of not requiring multiple processors, graphics cards or training datasets and can be run even with just several hundred megabytes of memory. This makes it possible to use the method as a Web application, effectively eliminating setup hurdles and compatibility issues with operating systems. We test this platform on mouse pre-implantation embryos, embryonic stem cell-derived embryoid bodies and mouse embryonic heart, and relate protein localization to tissue geometry. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。