Lycorine eliminates B-cell acute lymphoblastic leukemia cells by targeting PSAT1 through the serine/glycine metabolic pathway

石蒜碱通过丝氨酸/甘氨酸代谢途径靶向 PSAT1 消除 B 细胞急性淋巴细胞白血病细胞

阅读:4
作者:Yong Liu, Zefan Du, Tianwen Li, Jing Zhang, Yucai Cheng, Junbing Huang, Jing Yang, Luping Wen, Mengyao Tian, Mo Yang, Chun Chen

Abstract

B-cell acute lymphoblastic leukemia (B-ALL) has been confirmed as the most common malignant hematologic neoplasm among children. A novel antitumor mechanism of lycorine was elucidated in this study. As revealed by the result of this study, lycorine significantly inhibited the growth and proliferation of REH and NALM-6 and induced their apoptosis. The result of the RNA-seq analysis suggested that lycorine targeted PSAT1 of serine/glycine metabolism in B-ALL cells. As indicated by the result of the GSEA analysis, the genes enriched in the amino acid metabolic pathways were down-regulated by lycorine. As revealed by the results of ectopic expression, shRNA knockdown assays, and further liquid-phase tandem mass spectrometry (LC-MS) analysis, lycorine reduced serine/glycine metabolites by down-regulating PSAT1, further disrupting carbon metabolism and eliminating B-ALL cells. Furthermore, lycorine showed a synergistic effect with cytarabine in ALL treatments. Lastly, lycorine significantly down-regulated leukemia progression in the cell line-derived xenograft (CDX) model. In brief, this study has suggested for the first time that lycorine is a promising anti-ALL drug, and a novel amino acid metabolism-associated property of lycorine was identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。