Cell-Cell Interaction Proteins (Gap Junctions, Tight Junctions, and Desmosomes) and Water Transporter Aquaporin 4 in Meningothelial Cells of the Human Optic Nerve

人类视神经脑膜皮细胞中的细胞间相互作用蛋白(间隙连接、紧密连接和桥粒)和水转运蛋白水通道蛋白 4

阅读:6
作者:Thi Ngoc Co Zeleny, Corina Kohler, Albert Neutzner, Hanspeter E Killer, Peter Meyer

Conclusion

MECs are connected via tight junctions and gap junctions, and they possess AQP4 water channels. The presence of these proteins emphasizes the important function of MECs within the ON microenvironment as part of the meningeal barrier. Beyond this barrier function, the expression of these proteins by MECs supports a broader role of these cells in signal transduction and CSF clearance pathways within the ON microenvironment.

Methods

For closer characterization of the structural properties of the human MEC layer in the arachnoid, we performed immunohistological analyses to evaluate the presence of cell-cell interaction markers, namely, markers for tight junctions (JAM1, Occludin, and Claudin 5), gap junctions (Connexin 26 and 43), and desmosomes (Desmoplakin) as well as for water channel marker aquaporin 4 (AQP4) in retrobulbar, midorbital, and intracanalicular human ON sections.

Purpose

Meningothelial cells (MECs) play a central role in the maintenance of cerebrospinal fluid (CSF) homeostasis and in physiological and pathophysiological processes within the subarachnoid space (SAS) linking them to optic nerve (ON) pathologies. Still, not much is known about their structural properties that might enable MECs to perform specific functions within the ON microenvironment.

Results

MECs displayed immunopositivity for markers of tight junctions (JAM1, Occludin, and Claudin 5) and gap junctions (Connexin 26 and 43) as well as for AQP4 water channels. However, no immunopositivity was found for Desmoplakin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。