Persulfidation of plant and bacteroid proteins is involved in legume nodule development and senescence

植物和菌体蛋白的过硫化与豆科植物根瘤的发育和衰老有关

阅读:9
作者:Manuel A Matamoros, Luis C Romero, Tao Tian, Ángela Román, Deqiang Duanmu, Manuel Becana

Abstract

Legumes establish symbiosis with rhizobia, forming nitrogen-fixing nodules. The central role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in nodule biology has been clearly established. Recently, hydrogen sulfide (H2S) and other reactive sulfur species (RSS) have emerged as novel signaling molecules in animals and plants. A major mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification of proteins. To identify possible functions of H2S in nodule development and senescence, we used the tag-switch method to quantify changes in the persulfidation profile of common bean (Phaseolus vulgaris) nodules at different developmental stages. Proteomic analyses indicate that persulfidation plays a regulatory role in plant and bacteroid metabolism and senescence. The effect of a H2S donor on nodule functioning and on several proteins involved in ROS and RNS homeostasis was also investigated. Our results using recombinant proteins and nodulated plants support a crosstalk among H2S, ROS, and RNS, a protective function of persulfidation on redox-sensitive enzymes, and a beneficial effect of H2S on symbiotic nitrogen fixation. We conclude that the general decrease of persulfidation levels observed in plant proteins of aging nodules is one of the mechanisms that disrupt redox homeostasis leading to senescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。