Diflunisal and Analogue Pharmacophores Mediating Suppression of Virulence Phenotypes in Staphylococcus aureus

二氟尼柳及其类似药效团介导金黄色葡萄球菌毒力表型的抑制

阅读:7
作者:Liana C Chan, Hong K Lee, Ling Wang, Siyang Chaili, Yan Q Xiong, Arnold S Bayer, Richard A Proctor, Michael R Yeaman

Abstract

Invasive methicillin-resistant Staphylococcus aureus (MRSA) infections are leading causes of morbidity and mortality that are complicated by increasing resistance to conventional antibiotics. Thus, minimizing virulence and enhancing antibiotic efficacy against MRSA is a public health imperative. We originally demonstrated that diflunisal (DIF; [2-hydroxy-5-(2,4-difluorophenyl) benzoic acid]) inhibits S. aureus virulence factor expression. To investigate pharmacophores that are active in this function, we evaluated a library of structural analogues for their efficacy to modulate virulence phenotypes in a panel of clinically relevant S. aureus isolates in vitro. Overall, the positions of the phenyl, hydroxyl, and carboxylic moieties and the presence or type of halogen (F vs. Cl) influenced the efficacy of compounds in suppressing hemolysis, proteolysis, and biofilm virulence phenotypes. Analogues lacking halogens inhibited proteolysis to an extent similar to DIF but were ineffective at reducing hemolysis or biofilm production. In contrast, most analogues lacking the hydroxyl or carboxylic acid groups did not suppress proteolysis but did mitigate hemolysis and biofilm production to an extent similar to DIF. Interestingly, chirality and the substitution of fluorine with chlorine resulted in a differential reduction in virulence phenotypes. Together, this pattern of data suggests virulence-suppressing pharmacophores of DIF and structural analogues integrate halogen, hydroxyl, and carboxylic acid moiety stereochemistry. The anti-virulence effects of DIF were achieved using concentrations that are safe in humans, do not impair platelet antimicrobial functions, do not affect S. aureus growth, and do not alter the efficacy of conventional antibiotics. These results offer proof of concept for using novel anti-virulence strategies as adjuvants to antibiotic therapy to address the challenge of MRSA infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。