Imaging of Therapeutic Effects of Anti-Vascular Endothelial Growth Factor Inhibitors by Optical Coherence Tomography Angiography in a Rat Model

通过光学相干断层扫描血管造影对大鼠模型中的抗血管内皮生长因子抑制剂的治疗效果进行成像

阅读:5
作者:Johanna H Meyer, Janine Marx, Claudine Strack, Frank G Holz, Steffen Schmitz-Valckenberg

Conclusions

Compared to FA, OCTA imaging allows for a more precise and quantitative analysis of new blood vessel formation and therapeutic response to vascular endothelial growth factor (VEGF)-inhibitors, whereas it does not permit assessment of leakage. Translational relevance: These findings suggest that OCTA may be particularly useful for the investigation of new treatment targets in the animal model.

Methods

Laser treatment at day (D)0 was followed by intravitreal injection of aflibercept, AF564, and NaCl in dark agouti rats. Imaging with OCTA and FA was performed at D2, D7, D14, and D21. OCTA was compared to FA as well as confocal imaged flat mounts and analysis included quantification of CNV area, pixel intensity, vessel density, and number of vessel junctions.

Purpose

The aim of the study was to investigate optical coherence tomography angiography (OCTA) as a high-resolution in vivo imaging modality for monitoring therapeutic response to different vascular endothelial growth factor inhibitors in the rat model of laser-induced choroidal neovascularization (CNV). Further, OCTA findings were compared with fluorescein angiography (FA) and fluorescence microscopy.

Results

Within laser lesions, neovascularization were visible especially in deeper retinal layers on OCTA, but not on FA images. Using OCTA, mean CNV area (D21) at the level of the outer nuclear layer (ONL) was 0.017 mm² following aflibercept administration, 0.016 mm² following AF564 and 0.026 mm² following NaCl injection (P = 0.04 and P = 0.03). Similar differences between treatment groups were determined by FA and histology, although the overall CNV area was always larger on FA due to dye leakage (P ≤ 0.0001, all layers). Conclusions: Compared to FA, OCTA imaging allows for a more precise and quantitative analysis of new blood vessel formation and therapeutic response to vascular endothelial growth factor (VEGF)-inhibitors, whereas it does not permit assessment of leakage. Translational relevance: These findings suggest that OCTA may be particularly useful for the investigation of new treatment targets in the animal model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。