NRROS negatively regulates reactive oxygen species during host defence and autoimmunity

NRROS 在宿主防御和自身免疫过程中对活性氧产生负向调节作用

阅读:4
作者:Rajkumar Noubade, Kit Wong, Naruhisa Ota, Sascha Rutz, Celine Eidenschenk, Patricia A Valdez, Jiabing Ding, Ivan Peng, Andrew Sebrell, Patrick Caplazi, Jason DeVoss, Robert H Soriano, Tao Sai, Rongze Lu, Zora Modrusan, Jason Hackney, Wenjun Ouyang

Abstract

Reactive oxygen species (ROS) produced by phagocytes are essential for host defence against bacterial and fungal infections. Individuals with defective ROS production machinery develop chronic granulomatous disease. Conversely, excessive ROS can cause collateral tissue damage during inflammatory processes and therefore needs to be tightly regulated. Here we describe a protein, we termed negative regulator of ROS (NRROS), which limits ROS generation by phagocytes during inflammatory responses. NRROS expression in phagocytes can be repressed by inflammatory signals. NRROS-deficient phagocytes produce increased ROS upon inflammatory challenges, and mice lacking NRROS in their phagocytes show enhanced bactericidal activity against Escherichia coli and Listeria monocytogenes. Conversely, these mice develop severe experimental autoimmune encephalomyelitis owing to oxidative tissue damage in the central nervous system. Mechanistically, NRROS is localized to the endoplasmic reticulum, where it directly interacts with nascent NOX2 (also known as gp91(phox) and encoded by Cybb) monomer, one of the membrane-bound subunits of the NADPH oxidase complex, and facilitates the degradation of NOX2 through the endoplasmic-reticulum-associated degradation pathway. Thus, NRROS provides a hitherto undefined mechanism for regulating ROS production--one that enables phagocytes to produce higher amounts of ROS, if required to control invading pathogens, while minimizing unwanted collateral tissue damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。