Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors

D2 多巴胺和 A2A 腺苷受体对突触 Ca2+ 内流的竞争性调节

阅读:5
作者:Michael J Higley, Bernardo L Sabatini

Abstract

Striatal D2-type dopamine receptors (D2Rs) have been implicated in the pathophysiology of neuropsychiatric disorders, including Parkinson's disease and schizophrenia. Although these receptors regulate striatal synaptic plasticity, the mechanisms underlying dopaminergic modulation of glutamatergic synapses are unclear. We combined optogenetics, two-photon microscopy and glutamate uncaging to examine D2R-dependent modulation of glutamatergic synaptic transmission in mouse striatopallidal neurons. We found that D2R activation reduces corticostriatal glutamate release and attenuates both synaptic- and action potential-evoked Ca2+ influx into dendritic spines by approximately 50%. Modulation of Ca2+ signaling was mediated by a protein kinase A (PKA)-dependent regulation of Ca2+ entry through NMDA-type glutamate receptors that was inhibited by D2Rs and enhanced by activation of 2A-type adenosine receptors (A2ARs). D2Rs also produced a PKA- and A2AR-independent reduction in Ca2+ influx through R-type voltage-gated Ca2+ channels. These findings reveal that dopamine regulates spine Ca2+ by multiple pathways and that competitive modulation of PKA controls NMDAR-mediated Ca2+ signaling in the striatum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。