LncRNA CFRL aggravates cardiac fibrosis by modulating both miR-3113-5p/CTGF and miR-3473d/FN1 axis

LncRNA CFRL 通过调节 miR-3113-5p/CTGF 和 miR-3473d/FN1 轴加重心脏纤维化

阅读:7
作者:Yue Cui, Bozhong Shi, Zijie Zhou, Bo Chen, Xiaoyang Zhang, Cong Li, Kai Luo, Zhongqun Zhu, Jinghao Zheng, Xiaomin He

Abstract

Cardiac fibrosis is a major type of adverse remodeling, predisposing the disease progression to ultimate heart failure. However, the complexity of pathogenesis has hampered the development of therapies. One of the key mechanisms of cardiac diseases has recently been identified as long non-coding RNA (lncRNA) dysregulation. Through in vitro and in vivo studies, we identified an lncRNA NONMMUT067673.2, which is named as a cardiac fibrosis related lncRNA (CFRL). CFRL was significantly increased in both mouse model and cell model of cardiac fibrosis. In vitro, CFRL was proved to promote the proliferation and migration of cardiac fibroblasts by competitively binding miR-3113-5p and miR-3473d and indirectly up-regulating both CTGF and FN1. In vivo, silencing CFRL significantly mitigated cardiac fibrosis and improved left ventricular function. In short, CFRL may exert an essential role in cardiac fibrosis and interfering with CFRL might be considered as a multitarget strategy for cardiac fibrosis and heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。