Fluorescent BAPAD Dendrimeric Antigens Are Efficiently Internalized by Human Dendritic Cells

荧光 BAPAD 树突状抗原可被人类树突状细胞有效内化

阅读:7
作者:Pablo Mesa-Antunez, Daniel Collado, Yolanda Vida, Francisco Najera, Tahia Fernandez, Maria Jose Torres, Ezequiel Perez-Inestrosa

Abstract

A new fluorescent dendrimeric antigen (DeAn) based on a dendron with amoxicilloyl terminal groups was synthesized. The synthesis was carried out using a novel class of all-aliphatic polyamide dendrimer (BisAminoalkylPolyAmide Dendrimers, or BAPAD) involving the direct condensation of 3,3'-diazidopivalic acid as a building block. Iterative azide reduction/amide formation increases the dendrimer generation. The BAPAD dendrimer was designed with a cystamine core. Reduction of the disulfide bond allows the incorporation of BAPAD dendrons into a 1,8-naphthalimide functionalized with a maleimide group. The fluorescence properties of DeAn were studied in PBS and compared with the properties of an equivalent dendron possessing amino-terminal groups. Both molecules shown high fluorescence quantum yields in PBS and could readily be visualized by fluorescence microscopy. DeAn was used as a synthetic antigen in a biomedical assay that tests their potential as an amoxicillin carrier in drug internalization by dendritic cells (DC) from tolerant and allergic patients. Cytometry data suggest that the dendrons are non-toxic and easily internalized by DCs, while confocal microscopy images indicate that the compounds are preferentially accumulated in the cytoplasm. These results indicate that BAPAD dendrons are good candidates for synthetic scaffolds for biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。