Masking the transmembrane region of the amyloid β precursor protein as a safe means to lower amyloid β production

掩盖淀粉样β蛋白前体的跨膜区是降低淀粉样β蛋白生成的安全方法

阅读:6
作者:Ayesha Khan, Richard Killick, Daniel Wirth, Dominique Hoogland, Kalina Hristova, Jakob P Ulmschneider, Christopher R King, Martin B Ulmschneider

Discussion

Drugs targeting AD need to be given early and for very long periods to prevent the onset of clinical symptoms. This necessitates being able to target Aβ production precisely and without affecting the activity of key cellular enzymes such as γ-secretase for other substrates. Peptides offer a powerful way for targeting key pathways precisely, thereby reducing the risk of adverse effects. Here we show that protecting APP from proteolytic processing offers a promising route to safely and specifically lower Aβ burden. In particular, we show that the amyloid pathway can be targeted directly and specificically. This reduces the risk of off-target effects and paves the way for a safe prophylactic treatment.

Methods

Peptide technology has advanced to allow reliable synthesis, purification, and delivery of once-challenging hydrophobic sequences. This is opening up new routes to target membrane processes associated with disease. Here we deploy a combination of atomic detail molecular dynamics (MD) simulations, living-cell Förster resonance energy transfer (FRET), and in vitro assays to elucidate the atomic-detail dynamics, molecular mechanisms, and cellular activity and selectivity of a membrane-active peptide that targets the Aβ precursor protein (APP).

Results

We demonstrate that Aβ biogenesis can be downregulated selectively using an APP occlusion peptide (APPOP). APPOP inhibits Aβ production in a dose-dependent manner, with a mean inhibitory concentration (IC50) of 450 nM toward exogenous APP and 50 nM toward endogenous APP in primary rat cortical neuronal cultures. APPOP does not impact the γ-secretase cleavage of Notch-1, or exhibit toxicity toward cultured primary rat neurons, suggesting that it selectively shields APP from proteolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。