Dexmedetomidine Regulates the miR-146a-5p/NF- κ B Axis to Alleviate Electroconvulsive Therapy-Induced Cognitive Impairments

右美托咪啶调节 miR-146a-5p/NF- κ B 轴减轻电休克治疗引起的认知障碍

阅读:5
作者:Xiaohui Zhou, Peipei Si, Li Wang, Huiqun Jia

Abstract

Electroconvulsive therapy (ECT) is a nonpharmacological treatment for depressive episodes and other psychiatric disorders. It is used to control the condition by causing a transient loss of consciousness through electrical stimulation. Dexmedetomidine (DEX) is a novel and highly selective adrenergic agonist with sedative, sympathetic nerve activity inhibiting and stress-responsive effects. This study focused on the effect of DEX on cerebral protection after ECT treatment. 68 depression patients were enrolled and divided into control group and DEX group. The occurrence of delirium after ECT treatment in depression cases was recorded. In vivo, we constructed chronic mild and unpredictable stress (CUMS) rats to mimic depression model. Meanwhile, ECT treatment and DEX injection were administrated in CUMS rats. Learning and memory in rats were measured by Morris water maze test, open field test (OFT), and forced swimming test (FST). Finally, the expression of miR-146a-5p and NF-κB was determined by RT-qPCR and western blot assay. The incidence of delirium after ECT treatment was prominently reduced in DEX group in relation to control group. In vivo, DEX injection had no effect on ECT treatment efficacy against depression conditions. After ECT treatment, the cognitive impairment was ameliorated in CUMS rats accomplished with decreased miR-146a-5p and increased NF-κB level. Finally, compared with ECT treatment, DEX injection could protect against depression-like behaviors by increasing miR-146a-5p level and inactivated NF-κB pathway. Overall, ECT-induced cognitive impairment in depression rats could be ameliorated by DEX injection via miR-146a-5p/NF-κB axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。