The Anti-Osteoanabolic Function of Sclerostin Is Blunted in Mice Carrying a High Bone Mass Mutation of Lrp5

携带 Lrp5 高骨量突变的小鼠的硬化蛋白的抗骨合成代谢功能被削弱

阅读:7
作者:Timur A Yorgan, Stephanie Peters, Anke Jeschke, Peggy Benisch, Franz Jakob, Michael Amling, Thorsten Schinke

Abstract

Activating mutations of the putative Wnt co-receptor Lrp5 or inactivating mutations of the secreted molecule Sclerostin cause excessive bone formation in mice and humans. Previous studies have suggested that Sclerostin functions as an Lrp5 antagonist, yet clear in vivo evidence was still missing, and alternative mechanisms have been discussed. Moreover, because osteoblast-specific inactivation of β-catenin, the major intracellular mediator of canonical Wnt signaling, primarily affected bone resorption, it remained questionable, whether Sclerostin truly acts as a Wnt signaling antagonist by interacting with Lrp5. In an attempt to address this relevant question, we generated a mouse model (Col1a1-Sost) with transgenic overexpression of Sclerostin under the control of a 2.3-kb Col1a1 promoter fragment. These mice displayed the expected low bone mass phenotype as a consequence of reduced bone formation. The Col1a1-Sost mice were then crossed with two mouse lines carrying different high bone mass mutations of Lrp5 (Lrp5(A170V) and Lrp5(G213V)), both of them potentially interfering with Sclerostin binding. Using µCT-scanning and histomorphometry we found that the anti-osteoanabolic influence of Sclerostin overexpression was not observed in Lrp5(A213V/A213V) mice and strongly reduced in Lrp5(A170V/A170V) mice. As a control we applied the same strategy with mice overexpressing the transmembrane Wnt signaling antagonist Krm2 and found that the anti-osteoanabolic influence of the Col1a1-Krm2 transgene was not affected by either of the Lrp5 mutations. Taken together, our data support the concept that Sclerostin inhibits bone formation through Lrp5 interaction, yet their physiological relevance remains to be established.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。