Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases

聚乙二醇化羧酸修饰的聚酰胺树状聚合物作为骨靶向载体用于治疗骨疾病的开发

阅读:6
作者:Shugo Yamashita, Hidemasa Katsumi, Nozomi Hibino, Yugo Isobe, Yumiko Yagi, Kosuke Kusamori, Toshiyasu Sakane, Akira Yamamoto

Abstract

In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca2+. An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。