Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass

人类小肠中 P-糖蛋白 (ABCB1)、BCRP (ABCG2) 和 CYP3A4 含量变化对预测肠道首过效应的 PBPK 模型的影响

阅读:7
作者:Arnaud Bruyère, Xavier Declèves, Francois Bouzom, Kathryn Ball, Catie Marques, Xavier Treton, Marc Pocard, Patrice Valleur, Yoram Bouhnik, Yves Panis, Jean-Michel Scherrmann, Stephane Mouly

Abstract

It is difficult to predict the first-pass effect in the human intestine due to a lack of scaling factors for correlating in vitro and in vivo data. We have quantified cytochrome P450/3A4 (CYP3A4) and two ABC transporters, P-glycoprotein (P-gp, ABCB1) and the breast cancer resistant protein BCRP (ABCG2), throughout the human small intestine to determine the scaling factors for predicting clearance from intestinal microsomes and develop a physiologically based pharmacokinetic (PBPK) model. CYP3A4, P-gp and BCRP proteins were quantified by Western blotting and/or enzyme activities in small intestine samples from 19 donors, and mathematical trends of these expressions with intestinal localization were established. Microsome fractions were prepared and used to calculate the amount of microsomal protein per gram of intestine (MPPGI). Our results showed a trend in CYP3A4 expression decrease from the upper to the lower small intestine while P-gp expression is increasing. In contrast, BCRP expression did not vary significantly with position, but varied greatly between individuals. The MPPGI (mg microsomal protein per centimeter intestine) remained constant along the length of the small intestine, at about 1.55 mg/cm. Moreover, intrinsic clearance measured with specific CYP3A4 substrates (midazolam and an in-house Servier drug) and intestinal microsomes was well correlated with the amount of CYP3A4 (R(2) > 0.91, p < 0.01). In vivo data were more accurately predicted using PBPK models of blood concentrations of these two substrates based on the segmental distributions of these enzymes and MPPGI determined in this study. Thus, these mathematical trends can be used to predict drug absorption at different intestinal sites and their metabolism can be predicted with the MPPGI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。