Structural mapping techniques distinguish the surfaces of fibrillar 1N3R and 1N4R human tau

结构映射技术区分纤维状 1N3R 和 1N4R 人类 tau 蛋白的表面

阅读:8
作者:Emilie Caroux, Virginie Redeker, Karine Madiona, Ronald Melki

Abstract

The rigid core of intracellular tau filaments from Alzheimer's disease (AD), Pick's disease (PiD), and Corticobasal disease (CBD) brains has been shown to differ in their cryo-EM atomic structure. Despite providing critical information on the intimate arrangement of a fraction of htau molecule within the fibrillar scaffold, the cryo-EM studies neither yield a complete picture of tau fibrillar assemblies structure nor contribute insights into the surfaces that define their interactions with numerous cellular components. Here, using proteomic approaches such as proteolysis and molecular covalent painting, we mapped the exposed amino acid stretches at the surface and those constituting the fibrillar core of in vitro-assembled fibrils of human htau containing one N-terminal domain and three (1N3R) or four (1N4R) C-terminal microtubule-binding repeat domains as a result of alternative splicing. Using limited proteolysis, we identified the proteolytic fragments composing the molecular "bar-code" for each type of fibril. Our results are in agreement with structural data reported for filamentous tau from AD, PiD, and CBD cases predigested with the protease pronase. Finally, we report two amino acid stretches, exposed to the solvent in 1N4R not in 1N3R htau, which distinguish the surfaces of these two kinds of fibrils. Our findings open new perspectives for the design of highly specific ligands with diagnostic and therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。