Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy

二肽基肽酶 4 型抑制剂利格列汀对接受 5/6 肾切除术的 GLP-1 受体敲除小鼠的 GLP-1 受体非依赖性肾脏保护作用的机制

阅读:4
作者:Ahmed A Hasan, Karoline von Websky, Christoph Reichetzeder, Oleg Tsuprykov, Mohamed M S Gaballa, Jingli Guo, Shufei Zeng, Denis Delić, Harald Tammen, Thomas Klein, Burkhard Kleuser, Berthold Hocher

Abstract

Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham+wild type+placebo; 5/6Nx+ wild type+placebo; 5/6Nx+wild type+linagliptin; sham+knock out+placebo; 5/6Nx+knock out+ placebo; 5/6Nx+knock out+linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin β4 and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-β1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and Glp1r-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1, YB-1, thymosin β4 and TGF-β1) influenced by DPP-4 inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。